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A class of vector-space bases is introduced for the sparse representation of discretizations of

integral operators. An operator with a smooth, non-oscillatory kernel possessing a finite number
of singularities in each row or column is represented in these bases as a sparse matrix, to high
precision. A method is presented that employs these bases for the numerical solution of second-
kind integral equations in time bounded by O(n log2 n), where n is the number of points in the
discretization. Numerical results are given which demonstrate the effectiveess of the approach.
and several generalizations and applications of the method are discussed.
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1 Introduction

Integral equations are a well-known mathematical tool for formulating physical
problems. As a numerical tool they have several strengths (good conditioning.
dimensionality reduction, and the ability to treat arbitrary regions) but have
had one overriding drawback: the high cost of working with the associated dense
matrices. For a problem requiring an n-point discretization, the inverse of a
dense n x n-matrix must be applied to a vector. Even to apply the matrix
itself to a vector requires order 0(n 2) operations; application of its inverse )y
a direct (non-iterative) method requires order 0(n') operations. If an iterative
method is employed, the numher of iterations depends on the conditior nurb<-
ot the problem and each iteration requires application of the n x n matrix. For
large-scale problems, the resulting costs are often prohibitive.

In recent years a number of algorithms ([5], [10], [11], [14]) have been devel-
oped for the fast application of linear operators naturally expressible as dense
matrices, the best kliown of which are the particle simulation algorithms devel-
oped by L. Greengard and V. Rokhlin [10]. These schemes combine low-order
polynomial interpolation of the function which defines the matrix elements with
a divide-and-conquer strategy. They achieve (the equivalent of) order 0(7?) ap-
plication of a dense n x n-matrix to a vector.

Over a somewhat longer period, mathematical bases have been constructed
with certain multiscale properties. Families of functions hab,

ha,b(X) = lal- 1/2 h X a, b E R, a 0 0,

derived from a single function h by dilation and translation, which form a basis
for £2(T), are known as wavelets (Grossman and Morlet [12]). These families
have received study by many authors, resulting in constructions with a variety of
properties. Meyer [13] constructed orthonormal wavelets for which hi E C-(,P).
Daubechies [7] constructed compactly suppoited wavelets with h E Ck('7z) for
arbitrary k, and [7] gives an overview and synthesis of the field.

A recent paper [6] establishes a connection between the fast numerical al-
gorithms and the multiscale bases. It introduces the use of wavelets for the
application of an integral operator to a function in 0(n log n) operations. where
n is the number of points in the discretization of the function. The dissertation [41
of one of the present authors gives an earlier report of the present work. Another
paper [2] constructs a class of simple wavelet-like bases for £[0. 1] in which a1
variety of integral operators are sparse. In the present paper. rather than employ
a wavelet basis for C2, we construct a class of bases that transform the kles,,
matrices resulting from the discretization of second-kind integral equations into



sparse matrices. The n x n-matrices resulting from an n-point discretization are
transformed to matrices with order O(n log n) non-zero elements (to arbitrary
finite precision). In these bases, the inverse matrices are also sparse, and are
obtained in order O(n log 2 n) operations by a classical iterative method (due to
Schulz).

In §2 we present the mathematical construction of the new bases. In §3 we
briefly introduce Nystr6m's method for the solution of integral equations. and
show how the wavelet bases result in sparse representation of integral operators
and their inverses. We demonstrate that the Schulz method of matrix inversioll
is efficient in this context. In §4 we present the numerical algorithms for compu-
tation of the wvelet bases, transformation of an integral operator into the bases.
and computation of its inverse, and we analyze the time complexity of these algo-
rithms. A variety of numerical examples are presented in §5 to demonstrate the
effectiveness of the approach, and generalizations and applications are discussed
in §6.

2 Wavelet Bases

2.1 Properties of the Bases

Given a set of n distinct points S = {x 1,x 2 ,...,x,} C 71Z (the discretization) we
construct an orthonormal basis for the n-dimensional space of functions defined
on S. For simplicity, we assume that n = k-2', where k and I are positive integers.
and that x, < x 2 < ... < x,. The basis has two fundamental properties:

1. All but k basis vectors have k vanishing moments, and

2. The basis vectors are non-zero on different scales.

Fig. 1 illustrates a matrix of basis vectors for n = 128 and k = 4. Each row repre-
sents one basis vector, with the dots depicting non-zero elements. The first k' b.asis
vectors are non-zero on X1 , • , X2, the next k are non-zero on .22k+, X k. and
so forth. In all, one half of the basis vectors are non-zero on 2k points from S.
one fourth are non-zero on 4k points, one eighth are non-zero on Sk points, etc.
Each of these n/2 + n/4 + n/S + - . + k = n - k basis vectors has k zero moments.
i.e., if b = (bl,... , b,) is one of these vectors, then

•
bi'-=O, j=0,1..... k-1.

The finial k vectors result from orthogonalization of the moments (x 1
J . ,... X,-

= .



These properties of local support and vanishing moments lead to efficient
representation of functions which are smooth except at a finite set of singularities.
The projection of such a function on an element of this basis will be negligible
unless the element is non-zero near one of the singularities. As a simple example,
we consider the function f(x) = log(x) on the interval [0, 1] with the uniform
discretization xi = i/n. A hand calculation shows that for any c > 0, f may be
interpolated on the interval [c, 2c] by a polynomial of degree 7 with error bounded
by 49, or roughly single precision accuracy. If we choose k = 8 in constructing
the basis, f will be represented to this accuracy by the k basis vectors non-zero
on x 1 ,. . . ,2k, the k basis vectors non-zero on X1 ,. . . ,4k, and so forth, down to
the k basis vectors non-zero on xl,. . . ,x,, in addition to the k orthogonalized
moment vectors. The number of non-negligible coefficients in the expansion of f
in this basis grows logarithmically in n, the number of points of the discretization.
Although this example is idealized, its behavior is representative of the general
behavior of an analytic function near a singularity.

........ : ...... ........ : ,.

Figure 1: ]'ht -,atriy represents a wavelet basis for a discretzation with 12S
points, for k = 4. Each row denotes one basis :eclur, zrith th, dots dcpictiny
non-zero elements. All but the final k rows have k vanishing moments.
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2.2 Construction of the Bases

The conditions of "local" support and zero moments determine the basis vectors
uniquely (up to sign) if we require somewhat more moments to vanish. Namely.
out of the k vectors non-zero on xl,.. ., x2k, we require that one have k vanishing
moments, a second have k + 1, a third have k + 2, and so forth, and the kth have
2k - 1 vanishing moments. We place the same condition on the k- basis vectors
non-zero on x2k+,.. .X4k, and so on, for each block of k basis vectors among
the n - k basis vectors with zero moments.

We construct the basis by construction of a finite sequence of bases (shown in
Fig. 2), each obtained by a number of orthogonalizations. The first basis results
from n/(2k) Gram-Schmidt orthogonalizations of 2k vectors each. In particular.
the vectors (X, ... , x2k') for j = 0,.. . ,2k - 1 are orthogonalized, the vectors
(X2k+l1,... , x )4k for j = 0,. . ,2k - 1 are orthogonalized, and so forth, up to the
vectors (x,,_2k+lj,.. .,x~j) for ' = 0,... ,2k - 1 which are orthogonalized.

Half of the n vectors of the first basis have at least k zero moments: in
forming the second basis, these vectors are retained; the remaining 71/2 basis
vectors are transformed by an orthogonal transformation into basis vectors, each
of which is non-zero on 4k of the points x1,..., ,,, and half of which have at
least k vanishing moments. The orthogonal transformation results from n/(4k)

Gram-Schmidt orthogonalizations of 2k vectors each. Similarly, the third basis
is obtained from the second basis by an orthogonal transformation that itself
results from n/(8k) Gram-Schmidt orthogonalizations of 2k vectors each. Before
we can specify these orthogonalizations, we require some additional notation.

Suppose V is a matrix whose columns v, . •., v 2kare linearly independent. We
define W=Orth(V) to be the matrix which results from the columii-by-columII
Gram-Schmidt orthogonalization of V. Namely, denoting the columns of 11' I\
W , .,2k, we have

linear span{wl,...,wi} = linear span{v 1,...,v} i,j=1,....2k.
wiTwj -- 6ij1 

. . 2k

For a 2k x 2k-matrix V we let VU and VL denote two k x 2k--matrices. Vl
consisting of the upper k rows and VL the luwer k rows of V.

VU. (

Now we proceed to the definition of the basis matrices. Given the set of points
X .. ," with XI < ... < x,, vhcie n = k 2'.K we define thje 2h, x 2k
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moments matrices A!, for i1,. ,n/(2k) by the formula

/1X,+2 . 2k-I

= Ii

1Xs,+2k Xs,+2k 2k-I)

Figure 2: Each of the four matrICes represents17 one basis, as in Fig. 1. 77/
'upper-left matrix is formed by orthogonalizing moment Vctors8 on blocks of 21
points. The upper-right matrix is obtained from the upper-lefi mnatrix by 1wr toui-
tiplying by an orthogonal matrix which is the identity on the upper hailf SliK-
larny. the lower matrices are obtained by further orthogonal transforinaton.,. The/

low'rrigitmatrix represents the wavelet basi's for n. = 6-1. k = 4.
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where si = (i - 1)2k. The first basis matrix U71 is given by the formula

U 1  
, 2 L

U1.nl L

U,1 = .1 u

U1,2 U

where U1,?T = Orth(Mi,) and ni = n/(2k). The second basis matrix is U 2UI,

with U2 defined by the formula

U= (In /  U)

where Im is the m x m identity matrix and U2 is given by the formula

U2,1L

U 2
,2 

L

U = U2 ,,Y L
2 W2,1 U

U 2 , 2 U

where n 2 = n/(4k), U2,,
T - Orth(M 2.i), and M 2, is given by

M i = U1,2t- 1 1,2i_ 1
2,i = ( U,2iu. All,2i )

In general, the jth basis matrix, for j = 2.... ,log 2(n/k), is U. ... U \. with F
defined by the formula
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where U' is given by the formula

L

VnL

UUj,2 U

U

where n, = n/(2.k), U2,i is given by

tUiT = Orth(AMjf), (2)

and Al,,i is given by

= i =( Us-l.2i-IuM AJ-1, 2i - I )
A'!,= U-1,2[f M -1, ) " (:3)

The final basis matrix U = U, ... U1 , where I = log 2(n/k), represents the wavelet
basis of parameter k on x 1 ,.. .,r,.

Remark 2.1 The definitions given for the basis matrices are mathematical def-
initions only; in a numerical procedure, considerable roundoff error would be
introduced by the orthogonalizations defined above. In the actual implementa-
tion, the matrices MA,i are shifted and scaled, resulting in a numerically stable
procedure that is equivalent to the above definitions (in exact arithmetic). Details
of this procedure are provided in §4.

It is apparent that the application of the matrix U to an arbitrary vector
of length n may be accomplished in order 0(n) operations by the application
of Ui,. . ., U in turn. Similarly, U- 1 = UT may be applied to a vector in order
0(n) operations. Certain dense matrices, in particular those arising from integral
operators, are sparse in the basis of U and their similarity transformations can
be computed in 0(nlogn) operations. These techniques are developed in the
following sections.

\Ve conclude this section with an illustration of the vectors of one basis from
this class, in Fig. 3.



Figure 3: Basis vectors on four scales are shown for the basis wherc n 12,.
points x1 ,.. ,x, are equispaced, and k = S. The first column of vectors coo.s.t.
of rows 1-8 of U, the second column consists of rows 65-72, etc. Note that /ol/f
of the vectors are odd and half are eurn function.s, and that th odd oii,, (M
generally discontinuous at their center.
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3 Second-Kind Integral Equations

3.1 Nystr6m Method

A linear Fredholm integral equation of the second kind is an expression of the
form

f(X) - K(x, t) f(t) dt = g(x), (4)

where the kernel K is in £ 2[a, b]2 and the unknown f and right-hand-side 3 are iII
£C[a,b]. We use the symbol A to denote the integral operator of Eq. (4). wilnch
is given by the formula b

(KC f)(x) = j (x, t) f(t) dt,

for all f E £ 2 [a, b] and x E [a, b]. Then Eq. (4) written in operator form is

(I -A)f = g. (5)

The Nystr6m, or quadrature, method for the numerical solution of integral e(pia-
tions approximates the integral operator K by the finite-aimensional operator Rt.
characterized by points X iX2, xn E [a, b] and weights w, it . . . . .. . , .  R.
and given by the formula

n

(Rf)(x) = w1 I(x.x,) f(xj),
j=l

for all f E £ 2[ab] and x E [a,b]. Substitution of R for k in Eq. (5). combined
with the requirement that the resulting equation hold for x = xl,x ..... r,

yields the following system of n equi ions in the n unknowns fl, f 2 ...... f,,:

n

f,- -' I(x,.Xj) fj = g(x,) i.= 1 .. . G)

The approximation (fi, ... , f.) to the solution f of Eq. (4) may be extendcd
to all x E [a,b] by the natural formula

n

fR(x) = g(X) + _. 1 K (x.x,) f,. 7
t=1

which satisfies fn(x,) = fi for i - 1..., n. How large is the error L-? = . -. /); U,

the approximate solution'? We follow the derivation by Delves and NIolianwit', ii
[8]. Rewriting Eqs. (6) in operator form. we have

(I - R)f1? = g.
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and combining Eqs. (5) and (8) yields

(I - IC)CR = (A: - R)fR.

Provided that (I - K)- 1 exists, we obtain the error bound

IleRl[ _ 1(I - K)-'I I(K - KfnII. (9)

The error depends, therefore, cn the conditioning of the original integral equation.
as is apparent from the term 1(I - K:)-'Il, and on the fidelity of the quadrature
R to the integral operator K. It is not necessary that 11K - R11 be small, rather
merely that R approximate K well near the solution f. Quadrature rules timi

have this property, but which ire defined only on the points XI,... ., . are de-
veloped in [3]. In these rules the quadrature weights wi depend on the point
X,, for i = 1, ... , n, and the quadrature rules ccnverge rapidly for kernels with
diagonal singularities. These rules are used buow in the numu.ical exa mples of
§,5.

3.2 Sparse Representation of Integral Operators

We concern ourselves here with kernels K = K(x, t) which are analytic except
at x = t, where they possess an integrable singularity. We initially discretize
the integral operator K using a simple equispaced quadrarure. Given ii > 2, we
define points xl .. , x, to be equispaced on the interval [a, i,

x, = a + (i - 1)(b - a)/(n - 1), (10)

and define the elements T, of thc n x n-matrix T by the formula

T { nK(xi,,) i 4j (

T = 0 i? j

Note that the matrix T = T(n ) corresponds to a primitive, trapezoid-like qulr i-
ture discretization of the integral operator K. The matrix T possesses thQ simi
smoothness properties as the kernel K(x, t). Transformation of T by the lases
developed in §2 produces a matrix that is sparse, to high pr(_cision. The nunmbor
of elements is effe-tively bounded by order O(n log 7,).

When the mat.-ix representing the quadrature corrections developed in F31
is added to T, procducing high-order convergence to the integral operator. this

complexity bound remains valid.
The matrix T, transformed by the orthogonal n x n-nmtrix U, can be de-

composed into the sum of a sparse matrix and a matrix with small norm. GIi\ 'n
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c > 0, th-re exists c, > 0, independent of n, such that the transforinec matrix
c-n be written in the form

UTUT = V + E,

where the number of elements in V = V(n) is bounded by c, n log n and E = E("n)
is small: IIEII < f IITIh. We do not prove this assertion here; the proof paralluls
the proofs of similar statements in [2], but is somewhat more tedious.

3.3 Sol;,tion via Schulz Method

The sparse matrix representing the integral operator also has a sparse %ivrse.
which can be computed rapidly.

Schulz's method [15] is an iterative, quadratically convergent alg">,hn for
computing the inverse of a matrix. Its performance is characterized as follows.

Lemma 3.1 Suppose that A is an invertible matrix, X 0 is the matrix given by
Xo AH/IA HAjj, and for m = 0, 1.2,... the mnatrix V,+ is defined by the
recu rsion

Xm+ = 2X, - XmAXm.

Then Xm+I satisfie. the formula

! - Y,+iA = (I - XmA) 2 . (12)

Furthermore, Xm - A as m oc and for any f > 0 we have

III- XmAll < c provided m > 21og 2K (A) + loga2 log(1/e), (1:3

wheie K(A) = IIAI II A1-'i is the condition number of A and the nor i y'r 7)

by IhAIl = (largest eigenvalue of A"A)'/ 2 .

Proof. Eq. (12) is obtained directly from the definition of Bound (13)
is equally straightforward. Noting that A1.4 is symmetric positive-definite and
letting A0 denote the smallest and A1 the largest eigenvalue of AHA we have

II - XoAII = - A"1A

II Ij 'jH A I

- 1 - '( ) .

From Eq. (12) we obtain I - NinA (I- whA)2 ' , which in combinatioll witlh
Eq. (14) and simple manipulation yields b-)und (13). 0

The Schulz method is a notably simple scheme for matrix inversion and it-
convergcace is extremely rapid. It is rarely used. however. because it i'l%'olV(,
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matrix-matrix multiplications on each iteration; for most problem formulations.
this process requires order 0(n3 ) operations for an n x n matrix. We observe,
however, that a sparse matrix, possessing a sparse inverse, whose iterates X,,
are also sparse, may be rapidly inverted using the Schulz method. We have
seen above that a discretized integral operator I - T, similarity-transformed to
the representation A = I - UTUT, has only order 0(n logn) elements (to finite
precision). In addition, ATA and (ATA)m are similarly sparse. This property
enables us to employ the Schulz algorithm to compute A 1 in order 0(n log 71)
operations.

3.4 Oscillatory Coefficients

We now consider a somewhat more general class of integral equations, in which
the integral operator is given by the formula

(DACf)(x) = p(x) K(x,t) f(t) dt.,

where the kernel K is assumed to be smooth, but the coefficient function p
can be oscillatory. In particular, we only restrict p to be positive. In terms of
generality, these problems lie between the problems with smooth kernels (and
constant coefficient) and those with arbitrary oscillatory kernels.

Writing the corresponding integral equation in operator form, we obtain the
equation

(I-DA:)f=g. (15)

Although D is a diagonal operator, and K is smooth, it is clear that the discretiza-
tion of the operator DC will not be a sparse matrix in wavelet coordinates. In
this framework, it would appear that the construction of this paper is iniapplica-
ble. If we instead consider the operator D1/2 A2D1/2 , in which oscillations in the
rows match those in the columns, it becomes clear that the construction of !2
can be revised. Rather than constructing basis functions orthogonal to low-order
polynomials x-, we can construct them to be orthogonal to p(x)"/2 xJ.The sole
revision in our definition of basis matrices U1,... , Ut is to replace the definition
(1) of the moments matrices 1I, for i = 1,. .. ,n/(2k), by the new definition

p ,+ 1 0 . . . 0 1s,'2,+ l " " X S, + 2k- 
1

0 p., + ... 0 1 x5,+2 ... xS.+2 2 -1

M5,,+=
0 . . 0 Ps,+ 2k I's,,+ ... Xs,,+2 k2k- 1

where s, = (i - 1)2k and p, = p(X))1/2.
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Now the integral equation (15) can be transformed to the equation

(I - D'12 AD'1)(D-'1 2f) = (D-'/2g),

which is discretized to a system that is sparse in the revised wavelet coordinates.
The inverse matrix is also sparse.

4 Numerical Algorithms

In §2 we defined a class of bases for functions defined on I{l,... , x,} and in :3 \'c
showed that, to finite precision, second-kind integral operators and their inverses
are asymptotically sparse in these bases. In this section we present procedures
for computation of the bases, discretized integral operators in these bases, and
the inverses of these operators. In §5 we give some numerical examples based on
our implementations of these procedures.

The computation of the wavelet bases is discussed next, followed by a dis-
cussion of the transformation of the integral operators to the wavelet bases. \Ve
defer discussion of the computation of the inverses, sketched above, to §4.3,
which contains detailed descriptions of all of the algorithms. Finally, §4.4 gives
the complexity analysis for the algorithms.

4.1 Computation of Wavelet Bases

It was mentioned in §2 that the mathematical definition of U1,...,U1 , if used
directly, would result in a numerical procedure that would create large roundoff
errors. A correct procedure is obtained by shifting and scaling the matrices 1..,
defined there.

For a pair of numbers (ii, a) E JZ x (lZ\{0}) we define a 2k x 2k-matrix S(1. 7)
whose (i.j)th element is the binomial term

for i j, and S(p,a)i, = 0 otherwise. The matrix S(li,o,) is upper-triangular
and non-singular, and its inverse is given by the formula

S( ,'- 1  = S( -.11/ c,l1/ a). (7

Furthermore, the product formula

-5011, 17)5(112-02) = S(OL + 112,a .,0792) Is

is easily verified.
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We define MB forj = 1,...,l and i = 1,...,n/(2Jk) by the formula

= MjiS(/ j,i, a,i), (19)

where i,i = (xl+(i-I)k2 , + xik2,)/2, aj,i = (xik2, - Xl+(i-1)k2))/2 and the matrix
M,i is defined by Eq. (1) and Eq. (3) in §2. The matrix U,,i is given by the

formula

Uj, T = Orth(M,,), (20)

which is equivalent to the definition given by Eq. (2). This equivalence immedi-
ately follows from the fact that S(I, o') is upper-triangular and non-singular.

The matrices M ,i for i = 1,... ,n/(2k) are actually computed by the formula

( 1 ~ ' (x~~i )2k-1)2 J,(1
M1  1 (21

+ 2 k 
2 k-1

where si = (i - 1)2k. Likewise, the matrices ifia,i for j = 2,...,1 and I=
1,...,n/(2-k) are computed by the formula

S U,- 1 , 2 , U S,2i- I 'i (22)M ji uj 12 U A •j -1 2 , -"2,

where SJi and SJ, i are defined by the formulae

s2, I =0ji ii S(Y.j-1,2,0-, 2;-)(j,, (24)

Application of the inverse and product rules given in Eq. (17) and Eq. (IS) to
Eq (23) and Eq. (24) yields formulae by which Slls and Sq,2,, can be computed:

S ,i = S((ji - Yj- 1 ,2 i-l)/j-l 2 i-1, O'J,i/aj-1 ,2i-l) (25)

The matrices M, i given by Eq. (21) and Eq. (22) are easily seen to be math-
ematically equivalent to those defined by Eq. (19); nonetheless, computation of

M1 using Eqs. (21) and (22) avoids the large roundoff errors which would oth-
erwise result.

4.2 Transformation to Wavelet Bases

We assume that for equispaced points X ..... x, (defined in Eq. (10)) and some
k the orthogonal matrices U1,...,U1 defined in §2 have been computed (I

log 2(n/k)). We now present a procedure for computation of UL'T. whCr ("

U1 .". U, and T is the discretized integral operator defined in E 1. (11).

14



4.2.1 Simple Example

We begin with a simplified example in which T is replaced by an n x n-matrix
V of rank k whose elements V' are defined by the equation

k k
Vi = 1 A,xi x ', i,j =1. n.

r=1 s=1

Each row and each column of V contain elements which are the values of a
polynomial of degree k - 1. The matrix V can be written as V = PTAP, where
the elements of the k x n-matrix P are defined by Pij = xi -1 and A is the
k x k-matrix with elements Aij. Recalling that the last k rows of the basis
matrix U consist of an orthogonalization of the moment vectors (xl',..., x,) for
j = 0,..., k - 1, we can rewrite V as V = (PI)TA'p'. Here the k x n-matrix P'
consists of the last k rows of U and A' is a new k x k-matrix with elements .V\j.

By the orthogonality of U, it is clear the n x n-matrix UI/LTT = U(p)TA'p'UT

consists entirely of zero elements except the k x k-submatrix in the lower-right
corner, which is the matrix A'. Given a function to compute elements of the
n x n-matrix V, the matrix A' can be computed in time independent of n by
using a k x k extract of values from V. We form the matrix V' with elements /'

defined by the formula

Vj = tn/k,jn/k, I,j = 1,...,k. (27)

Then V' = (P"I)TA'P", where P" is the k x k extract of P' with elements givell
by Pj= p n/* Thus we obtain

A' = ((p,)T)-i V,(p:,)-I (2S)

from P" and V' readily in 0(k3 ) operations, and we have obtained UVUT.

4.2.2 General Case

The integral operator matrix T is, of course, not of low rank. but it can be divided
into submatrices, each approximately of rank k (see Fig. 4). The submatrices
near the main diagonal are of size k x k, those next removed are 2k x 2k and
so forth up to the largest submatrices, of size n/4 x n/4. The total number of
submatrices is proportional to n/k. Given an error tolerance c > 0. k may be
chosen (independently of n) so that each submatrix of T. say T, may be written
as a sum, = V' + E', where the elements of Vj are given by a polynomial of
degree k- 1 and jIE'll < lIIT'ii.

The simplified example, in which the matrix to be transforned is of ranik
k, is now applicable. Each submatrix of T is treated as a matrix of raink A.
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Figure 4: The matrix represents a discretized integral operator with a kernel that
i s singular along the diagonal. The matrix is divided into submat rices of rank k
(to high precision) and transformed to a sparse matrix with 0(n2 log n) elemEnts.
Here n/k = 32.

and is transformed to wavelet coordinates (for its 6'wn scale) in order 0(k0)
operations. To make this precise, we write T = To + - - + T1..2 where Tj consists
of the submatrices of size 2'k x 2'k. For each 2', the submatrices of T may be
interpolated by rank k submatrices, as indicated by the extract of Eq. (27), to
obtain matrices 14. Thus Tj = Vi + E,, where IlE~Il is sinall. In the simplJlified
example above, we have shown that the transformed matrices

I'vo -,7

IV :l ;, U, T

W2 U 2U1 VU 1 2T (29)

can be computed by many applications of Eq. (2S), all in order 0(nk2) Ope-a erolns.
This estimate follows from the fact that there are 0(nk) subinatrices. ach
of which is transformed in 0(k ) operations. Notv we define no x -intiets.
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Ro,..., R, recursively:

Woi0 (30)
I U:RiiUT + Wi i> 1

(here IV-, = Wt = 0). Then Ri contains the final result, R, = U(T - E)Ut
where E = Eo+ -. +EI- 2.

The matrix-matrix products in the definition of Ro,..., Rl can be computed
directly, since the factors and the products contain no more than O(n log n) ele-
ments. A simple implementation with standard sparse matrix structures results
in a total operation count of order O(n log 2 n), but an implementation using
somewhat more elaborate data structures, in which repetitive handling of data
is avoided, requires only order O(n log n) operations.

Computation using the result RL is made more efficient by removing the ele-
ments of R1 which can be neglected, within the precision with which R1 approx-
imates UTUT. For a given precision e, we discard a matrix E' by eliminating
elements from R, below a threshold 7. The threshold depends on the choice of
norm; in our implementation, we use the row-sum norm

n

1AII = maxZ IAij1,
j=1

for an n x n-matrix A. The element threshold

r = -f .ITi (31)
n

clearly results in a discarded matrix E' with IIE'll < cITII.

4.3 Detailed Descriptions of Algorithms

Procedure to compute U1,... ,U1

Comment [Input to this procedure consists of the number of points n,
the number of zero moments k, and the points xl,.... ,x,. Output is the
matrices Uji for j = 1,..., I and i = 1,..., n/(23 k), which make up the
matrices U,... ,U1 (note 1 = log2(n/k)).]

Step 1.
Compute the shifted and scaled moments matrices 11', i for
i= 1,.... n/(2k) according to Eq. (21).
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Step 2.
Compute U1,j from M ,i by Eq. (20) using Gram-Schmidt
orthogonalization for i = 1,... n/(2k).

Step 3.
Comment [Compute MI i and Uji for j = 2,...,l and

i= 1,..., (2 ).

do j = 2,...,l
do i = 1,...,n/(23k)

Compute Uj_,2i,1 UA' 1,2i -1 and LJAII

Compute Sji by Eq. (25) and S,,i by Eq. (26);
multiply to obtain Mj,i by Eq. (22).

Orthogonalize _lji to obtain Uji by Eq. (20).
enddo

enddo

Procedure to compute UTUT

Comment [Input to this procedure consists of n, k, the matrices U,,
computed above, a function to compute elements of T, and the chosen
precision f. Output is a matrix R, such that IR, - UTUIll < elITl.]

Step 4.
Compute the k x k extracts, indicated by Eq. (27), of the
submatrices of T shown in Fig. 4.

Step 5.
Extract the matrices P" (Eq. (28)) from U1, U2U1 , ... , U1 "U 1

and compute WO,. .-VVt 2 according to Eqs. (29).

Step 6.
Compute Ro,..., R, by Eq. (30), discarding elements below
a threshold r determined by the precision f (Eq. (31)).

Procedure to compute LT-1LUT

Comment [Input to this procedure consists of n, the matrix R, which
approximates UTUT , and the precision E. Output is a matrix M
that approximates UT-IUT.]
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Step 7.
Compute the matrix Xo = RITR1/fIRITRil by direct matrix
multiplication, discarding elements below a threshold r
determined by the precision e (Eq. (31)).

Step 8.
Comment [Obtain the inverse by Schulz iteration.]
do m = 0, 1,... while II- X,,RIj L E

Compute X.+i = 2 Xm - X,,,RlXm, discarding elements
below threshold.

enddo

4.4 Complexity Analysis

In the following table, we provide the operation count for each step of the com-
putation of UT - UT.

Step Complexity Explanation
1. 0(nk) There are n/(2k) 2k x 2k-matrices; each element

of the matrices is computed in constant time.

2. 0(nk2) For each of the n/(2k) matrices, perform a Gram-

Schmidt orthogonalization requiring order 0(k3 )
operations.

3. 0(nk2) For each of n/(4k) + n/(8k) +... + 1 = n/(2k) - 1
matrices, compute four products of a k x 2k-
matrix with a 2k x 2k-matrix, construct two
2k x 2k-matrices, and orthogonalize one 2k x 2k-
matrix.

4. 0(nk) There are 6(1+3+7+.. .+(n/(2k)-1))+ 3(n/k)-

2, or order O(n/k), submatrices of T and for each
matrix we compute k2 elements.

5. O(nk2 ) There are n/(2k)+n/(4k)+...+l = n/k-1 ma-
trices P", each the product of two k x k-matrices.
These are each inverted and multiplied with the
0(71/k) matrices of the previous step.

19



Step Complexity Explanation
6. O(n log n) The diagonally-banded matrix WO, which contains

O(n) elements, grows to O(nlogn) elements by
the computation of UWoUT, as can be seen by
simply examining pictures of W0 and U. The non-
zero elements of the transformed Wl ,..., Wi 2 are
a subset of those of W0 .

7. O(n log 2 n) Multiplication of two matrices, each with order
O(nlogn) elements, to obtain a product with or-
der 0(n log n) elements.

8. O(n log 2 n) Two multiplications like that of Step 7 are made
per iteration; the number of iterations is indepen-
dent of n and given by bound (13).

Total O(nlog2 n)

5 Numerical Examples

In this section we present operators from several integral equations, the discretiza.-
tion and transformation of the operators to our wavelet bases, and the inversion
of the operators via Schulz method.

5.1 Uncorrected Quadratures

We first examine simple quadratures with equal weights, except weight zero at
the singularity, as represented by matrix T = T(n) defined by Eq. (11). We
transform the matrix I - T to wavelet coordinates as described in §4.2, then
compute (I - T) - 1.

These discretizations are not particularly useful for the solution of the inte-
gral equations, due to their slow convergence to the integral operators. They
nonetheless make good illustrative examples, for they retain the smoothness of
the operator kernels and produce correspondingly sparse matrices. In the next

subsection, we examine the results of using high-order quadratures.
For various sizes n of discretization, we tabulate the average number of ele-

ments per row in the transformed matrix U(I - T)UT and the computation time
to obtain the matrix. In addition, we display the average number of elements
per row of its inverse, and the time to compute the inverse. Finally. we show the
error introduced by these computations. The error is determined by the appli-
cation of the forward and inverse transformations to a random vector: Choose a
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vector v of length n with uniformly distributed pseudo-random elements; com-
pute (I-T)v directly, by a standard procedure requiring order 0(n 2 ) operations;
transform to wavelet coordinates, obtaining U(I-T)v; apply the computed value
of U(I - T)-UT to the vector U(I - T)v; transform to original coordinates by
application of UT; compare the result v' to v. The measure of error is the relative

2 error, defined by the formula
e Fn V,1 1 °v i / 2 ~ '

The programs to transform and invert, as well as those to determine the error.
were implemented in FORTRAN. All computations were performed in double-
precision arithmetic on a Sun Sparcstation 1.

The first set of examples is for the kernel K(x, t) = log Ix - ti, for a wavelet
basis of order k = 4 and various choices of precision E. The matrix sparsities.
execution times, and errors appear in Table 1. Although the sparse matrices are

not banded, we loosely refer to the average number of matrix elements per row
as the matrix bandwidth. We make the following observations:

1. The bandwidths N1 , N 2 of the operator and its inverse decrease with increas-
ing matrix size. In other words, in the range of matrix sizes tabulated, the
number of matrix elements grows sublinearly in the matrix dimension n.

2. The operator matrix in wavelet coordinates is computed in time that grows
nearly linearly in n.

3. The inverse matrix is computed in time which grows sublinearly in 71. This
is due to the fact that the cost of multiplying the sparse matrices is roughly
order O(nN 2), for size n and bandwidth N. One result is that the cost
sometimes drops as n increases.

4. The accuracy is within the precision specified. In fact, due to the conser-
vative element thresholding (Eq. 31), the actual error is considerably less
than E.

5. The cost increases with increasing precision E, due to the increasing band-
widths generated. The the bandwidths increase approximately as log(l/C).

6. For k = 4, our fast transformation algorithm does not maintain the specified
precision of e = 10-. This anticipated result follows from the error estimate
for polynomial interpolation of logarithm on intervals separated from the
origin. An unanticipated attendant result is that the bandwidth increases
as the quality of approximation deteriorates (compare to k = S, below L..-\S
a result, we did not complete examples for n = 4096, 8192.
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Table 1: The integral operator K defined by the formula (kf)(x) = f(x)-
fo log Ix - tI f(t) dt is discretized, transformed to the wavelet coordinate.s with
k = 4, and inverted. For various precisions e and various sizes of discretization,
we tabulate the average number of elements/row N1 of the matrix in wavelet co-
ordinates and the time in seconds tj to compute it, corresponding statistics AV2

and t2 for the inverse, and the error (see text).

Transform. Inversion £2

n N, t1  N 2  t 2  Error
10-2 64 7.2 2 8.3 2 0.503E-02

128 5.9 3 6.5 4 0.257E-02
256 3.8 7 4.4 4 0.250E-02
512 2.8 13 3.1 6 0.236E-02

1024 1.9 26 2.1 6 0.227E-02
2048 1.4 49 1.4 6 0.221E-02
4096 1.2 97 1.2 8 0.221E-02
8192 1.1 195 1.1 12 0.217E-02

10- 3  64 17.6 2 19.5 14 0.350E-03
128 18.1 5 20.0 36 0.270E-03
256 18.0 11 20.0 83 0.331E-03
512 14.5 21 15.7 123 0.257E-03

1024 13.3 41 15.5 262 0.340E-03
2048 8.5 73 9.8 287 0.233E-03
4096 5.8 131 6.5 304 0.222E-03
8192 3.7 242 4.4 312 0.221E-03

10- 4  64 28.4 3 30.3 36 0.104E-03
128 32.1 6 34.3 111 0.140E-03
256 34.5 15 37.5 302 0.161E-03
512 33.1 31 35.8 618 0.177E-03

1024 30.2 63 33.6 1280 0.189E-03
2048 25.0 121 27.6 20-0 0.192E-03

7. The inversion of the 8192 x 8192 matrix preserving 3-digit accuracy is dun
in 5 minutes on the Sparcstation. This compares to 95 days (estimated)
for inverting the dense matrix by Gauss-Jordan and to 24 minutes for oule
dense matrix-vector multiplication of that size.

The condition number of the problem, as approximated by the product of the
row-sum norms of L;(I - T)UT and its computed inverse, is 3 (independent of
size). Five iterations were required by the Schulz method to achieve conveigclice.
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Figure 5: The matrices constructed in the transformation of I -T, mnalri-
ces Ro,...,R 3 defined in Eq. (30), are shown for kernel K(x,:t) log x

f = 10-3, and n = 64. The matrix Rt4 looks like Rt3 and is not shown.

In Fig. 5 we show stages in the transformation of the matrix I -T. III
particular, for c = 10-3 and n =64, the matrices R 0,. .. , Rj-j. defined in Eq. (:30)
are shown. In addition, for n =128 the transformed matrix U(I - T )ULT and its
inverse are shown in Fig. 6.

In the next set of examples, for which results are displayed in Table 2. wc
used the wvavelet basis of order k = S. We observe:

1. The bandwidths of the operator matrix and its inverse are less for k
than for k = 4. The inversion times are correspondingly smaller.

2. The time required to compute the operator matrix is almost four tMImS
as large as that for k = 4. This is due to the cost of transforming the
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Table 2: The integral operator iC defined by the formula (lCf)(x) = f(r)-
fo' log x - tl f(t)dt is discretized, transformed to the wavelet coordinates ?cithi

k = 8, and inverted. (See Table 1 and text.)

Transform. Inversion c 2

E n N, t1  N 2  t2  Error
10-2 64 5.8 4 6.2 1 0.191E-02

128 5.0 10 5.5 2 0.368E-02
256 3.3 22 3.6 3 0.184E-02
512 2.7 46 2.9 4 0.113E-02

1024 1.8 92 1.8 4 0.177E-02
2048 1.4 182 1.4 5 0.170E-02
4096 1.2 363 1.-* 8 0.928E-03
8192 1.1 729 1.1 11 0.166E-02

I0- 3  64 13.4 5 14.5 8 0.373E-03
128 14.2 13 15.5 21 0.332E-03
256 13.5 28 14.5 46 0.259E-03
51" 12.7 57 13.6 90 0.225E-03

1024 10.2 114 11.1 134 0.198E-03
2048 7.7 221 8.3 176 0.179E-03
4096 4.9 429 5.2 185 0.174E-03
8192 3.5 818 3.7 208 0.173E-03

I.- 4  64 21.8 6 23.0 23 0.280E-04
128 26.3 15 28.0 81 0.253E-04
256 28.7 35 31.0 23.5 0.246E-04
512 28.4 75 30.9 538 0.184E-04

1024 25.5 149 27.2 969 0.925E-05
2048 22.0 297 23.8 1739 0.899E-05
4096 17.7 561 19.1 2610 0.798E-05

4. As for k = 4, the scaling with size n is linear tor the transformation step
and sublinear for the inversion step.

In the final set of examples in which uncorrected quadratures were used. we
perform computations for k = 4 and c = 10-', with various operator kernels.
Table 3 presents the rcsults. The first three kernels contain singularitie- of the
types s(x) = log(i) and s(x) = x" for a = ±1, and are nonsymmetric and non-
convolutional. It is readily seen that the bandwidth is strongly dependent on the

type of singularity, with the singularity x - 1/ producing the greatest baind\ildth.
\We mention also that this particular integral equation is poorly-conditiouked:
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Table 3: The integral operator A: defined by the formula (kf)(x) = f(x)-
fJ K(x, t) f(t) dt, for nonsymmetric, nonconvolutional kernels K(x, t) shown bL-
low, is discretized, transformed to the wavelet coordinates with k = 4 and

= 10- 3 , and inverted. (See Table 1 and text.)

Transform. Inversion £2

K(z, t) n N1  t1  N 2  t 2  Error
cos(Xt 2 ) log Ix - tI 64 18.2 2 20.2 15 0.318E-03

128 18.6 5 20.4 37 0.302E-03
256 17.9 11 19.8 82 0.301E-03
512 14.9 22 16.3 131 0.284E-03

1024 12.9 42 14.7 242 0.315E-03
2048 8.5 76 9.5 283 0.241E-03
4096 5.5 137 6.1 291 0.231E-03
8192 3.6 252 4.3 310 0.230E-03

cos(Xt 2 )IX - tj - 1 /2 64 27.2 3 28.9 32 0.256E-03
128 31.6 7 34.1 122 0.357E-03
256 35.6 16 40.6 454 0.434E-03
512 37.3 35 46.3 1509 0.643E-03

1024 34.5 72 45.4 4166 0.821E-03

cos(xt 2)IX -
1/ 2  64 6.8 2 7.3 2 0.303E-03

128 4.4 4 4.7 2 0.204E-03
256 2.9 8 3.0 3 0.209E-03
512 2.1 15 2.3 3 0.165E-03

1024 1.5 30 1.5 3 0.208E-03
2048 1.4 60 1.4 6 0.909E-03
4096 1.1 119 1.2 7 0.614E-03
8192 1.1 242 1.1 12 0.666E-03

(1 + sin(100x))x 64 30.5 3 33.8 44 0.344E-03
log Ix - tI 128 31.8 6 35.1 103 0.363E-03

256 21.2 12 24.1 119 0.34SE-03
512 18.6 23 20.7 225 0.372E-03

1024 15.8 45 18.4 404 0.392E-03
2048 10.6 82 12.2 466 0.355E-03
4096 6.4 145 7.4 497 0.336E-03
8192 4.0 265 4.6 510 0.331E-03

the condition numbers of the discretizations for n = 64, 128. 2.56. 512. 102 1 at,'

9. 17, 34, 98,469, respectively.
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The fourth kernel provides an example with an oscillatory coefficient p(x) =

(1 + -sin(100x)). The bases developed in §3.4, which depend on p, are used to
transform the discretized integral operator to sparse form. We see ini Table 3
that the inverse is also very sparse.

5.2 Solution of Integral Equations

In the preceding subsection, we examined the characteristics of various integral
operators and their inverses in wavelet coordinates. We used completely straight-
forward discretizations; the quadratures represented sums of the integrands at
equispaced points (excluding singular points). Such simple quadratures converge
too slowly to the integral operators to be of much use in solving integral equa-
tions, and we now turn to the high-order quadratures developed in [3].

We first present examples which correspond to the various kernels already
tested and shown in Table 3. In Table 4 we tabulate the results, and bandwidth
differences from Table 3 reflect the effect of the quadratures.

For the remaining examples we choose integral equations that can be solved
analytically, so that the accuracy of the method can be checked. We consider a
class of integral equations with logarithmic kernel,

f(x) - p(x) log Ix - tlf(t)dt = gm(x), X E [0, 1], (32)

where the right hand side gm is chosen so that the solution f is given by the
formula f(x) = sin(mx). The integration can be performed explicitly, yielding

fj log Ix - tI sin(mt) dt = log(x) - cos(m) log(1 - x)

- cos(mx)[Ci(mx) - Ci(m(1 - x))]

- sin(mx)[Si(mx) + Si(m(1 - x))].

where Ci and Si are the cosine integral and sine integral (see, e.g., [1]. p. 231).
Equation (32) clearly requires quadratures with increasing resolution as in in-
creases; for our examples we let n = m, which corresponds to 2-,. points per
oscillation of the right hand side g,.

Initially we choose coefficient p(x) = 1. The results are given in Table 5. Here
the error shown is the error of the computed solution relative to the true solution
of the integral equation. Many of the observations of the preceding examples can
be repeated here; additionally, we make the following comments:

1. The bandwidths are greater than for the uncorretted quadratures. but this
effect generally decreases with increasing size.
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Table 4: The integral operator C defined by the formula (KCf)(x) = f(x)-
fo K(x, t) f(t) dt, for nonsymmetric, nonconvolutional kernels K(x, t) shown be-
low, is discretized with the corrected trapezoidal rules, transformed to the wavelet
coordinates with k = 4 and e = 10 - , and inverted. (Compare to Table 3.)

Transform. Inversion £2

K(X, t) n N1  t1  N 2  t2  Error
cos(xt 2) loglz - tI 64 28.3 4 31.6 38 0.164E-03

128 31.5 9 34.3 103 0.162E-0:
256 30.8 21 33.9 221 0.172E-03
512 27.0 41 29.7 370 0.177E-03

1024 21.0 80 23.7 454 0.3-57E-03
2048 14.8 143 17.2 566 0.317E-03
4096 9.5 250 10.4 555 0.282E-03
8192 5.8 448 6.9 665 0.271E-03

cos(xt 2)IX - tL- 1 /2  64 32.4 4 39.8 87 0.133E-02
128 38.3 10 45.7 251 0.412E-03
256 42.7 23 49.3 638 0.464E-03
512 45.1 51 51.3 1494 0.562E-03

1024 46.2 110 52.1 3309 0.635E-03

cos(Xt 2)X -t ' / 2  64 10.4 3 18.4 9 0.867E-03
128 7.6 6 13.8 13 0.526E-03
256 5.1 13 9.3 16 0.35SE-03
512 3.3 25 5.2 15 0.292E-03

1024 2.3 48 3.1 15 0.201E-03
2048 1.9 96 2.3 20 0.393E-03
4096 1.5 188 1.7 25 0.405E-03
8192 1.3 374 1.4 36 0.404E-03

2. The integral equations are solved to within the specified precision in every
case but one. The exception, for C = 10- 4 and n = 64, is likely due to the
small number of quadrature points and high specified precision.

3. An integral equation requiring an 8192-point discretization is solved to 3-
digit accuracy in less than 20 minutes on the Sparcstation.

For our second set of integral equations, we let the coefficient p be the os-
cillatory function given by the formula p(x) = 1 + Isin(100x). \Ve carry oul
the transformation described in §3.4 to solve the integral equation 32. The re-
suits are shown in Table 6 and as with Table 5 the error refers to the error of
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Table 5: The integral equations f(x) - fJ log I x- tI f(t)dt = gm(x), for which ai
explicit solution is known, are solved by the methods of this chapter (compare to
Table 1 and see text). For e = 10- 2, 10- 3 , 10-1 we set k = 4,4,8, respectively.

Transform. Inversion £2

E n, m N1  ti N2  t2  Erro:
10 -  64 11.4 3 14.4 7 0.283E-02

128 10.7 7 13.2 14 0.212E-02
256 8.6 13 10.6 20 0.140E-02
512 6.3 26 7.6 26 0.112E-02

1024 3.6 48 4.5 28 0.821E-03
2048 1.9 90 2.3 21 0.932E-03
4096 1.3 174 1.5 15 0.674E-03
8192 1.1 344 1.1 13 0.499E-03

10- 3  64 27.7 4 31.3 36 0.235E-03
128 31.0 9 34.2 99 0.169E-03
256 30.6 20 33.6 215 0.161E-03
512 27.5 41 30.2 377 0.130E-03
1024 21.7 79 24.4 470 0.597E-03
2048 15.5 143 18.1 604 0.479E-03
4096 9.7 248 10.6 579 0.415E-03
8192 6.0 444 7.3 690 0.354E-03

10- 4  64 37.2 8 45.9 78 0.127E-03
128 47.1 23 56.5 278 0.473E-04
256 52.9 54 60.9 745 0.311E-04
512 55.0 118 61.4 1701 0.100E-04

1024 52.3 248 57.2 3287 0.734E-05

the computed solution relative to the true solution of the integral equation. For
the oscillatory coefficient we see performance similar to the constant-coefficient
problem, but the cost is higher.

6 Generalizations and Applications

In this paper, we have constructed a new class of vector-space wavelet bases ill
which a variety of integral operators are represented as sparse matrices. The
inverses of these matrices are also sparse, a fact which enables the corresponding
integral equations to be solved rapidly. \Ve have asserted that the time complexity
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Table 6: The integral equations f(x)-p(x) fo' log Ix-tI f(t)dt = gm(x), for which
an explicit solution is known, are solved by the methods of this chapter (compare
to Thble 1 and &c tcxt). For c = 10- 2, 10 - 3, 10- we set k = 4,4, 8, respectivrii.

Transform. Inversion £2

f n, m N1  tl N2  t 2  Error
10-2 64 19.7 4 23.9 18 0.360E-02

128 17.7 8 21.0 36 0.182E-02
256 12.6 15 14.6 47 0.174E-02
512 8.4 29 9.8 57 0.112E-02
1024 4.7 55 5.7 56 0.104E-02
2048 2.4 103 2.7 45 0.902E-03
4096 1.6 198 1.7 38 0.720E-03
8192 1.3 392 1.3 35 0.543E-03

10- 3  64 36.2 4 41.3 63 0.228E-02
128 40.8 10 47.0 186 0.209E-03
256 40.5 23 47.3 427 0.177E-03
512 34.7 46 40.9 712 0.125E-03
1024 26.6 87 32.5 1042 0.134E-03
2048 18.7 158 22.5 1065 0.597E-03
4096 12.2 281 14.2 1127 0.529E-03
8192 7.2 502 8.4 1104 0.461E-03

10- 4  64 47.6 9 58.2 123 0.230E-02
128 60.7 25 77.3 479 0.180E-03
256 64.1 59 81.2 1204 0.124E-03
512 62.5 128 76.3 2492 0.125E-04
1024 58.8 267 69.3 4672 0.862E-05

for an n-point discretization is bounded by order O(n log 2 n), but observed order
O(n) performance in practice. This cost should be contrasted with a cost of
order O(n 2 ) for direct application of a dense matrix, and order O(n 3 ) for direct
inversion.

A number of limitations exist in the procedures described above. These re-
strictions may be categorized as "software limitations" and "research questions".
We discuss software limitations first.
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6.1 Software Limitations

Throughout the paper, we have assumed that the size of the problem n has the
form n = 21k for some I. This restriction is not fundamental; it merely simplifies
the software.

A second software restriction is the assumption of only diagonal singularities.
This case is an important one in practice, but in certain situations one may
encounter singularities or near-singularities off the main diagonal. The scheme
described in §4.2 for transformation of a matrix to wavelet bases can be readily
revised to an adaptive scheme, which works as follows: an m x m submatrix
A is transformed to wavelet coordinates, under the assumption that it can be
approximated to high precision in each direction by a polynomial of degree less
than k. This assumption is then checked by dividing A into four submatrices. each
of dimension m/2 x m/2, transforming each submatrix, and "glueing" the pieces
together. If the results from the two computations match (to high precision), no
further refinement of the original submatrix is needed. Otherwise, the procedure
is repeated recursively on the m/2 x m/2 submatrices. The cost of this adaptive
procedure is roughly 5 times as great as the cost of a static procedure in which
the structure of the singularities is known a priori.

6.2 Research Questions

The list of research issues is of course much longer. One of the most pressing issues
is the generalization to two and three dimensions. Although conceptually the
generalization of the wavelet bases to several dimensions is quite straightforward
(see, e.g., [2]), actual procedures to perform the required orthogonalizations have
not been developed. Also, the issue of high-order quadratures for two and three
dimensions has not been resolved.

Another question is whether similar "custom-constructed" bases can be used
to create sparse representations of integral operators with oscillatory kernels.
Initial efforts in this direction for a limited class of such operators, in particular for
Fourier transforms with non-equispaced points and frequencies, appear promising
[9].

6.3 Applications

In this paper the primary application of our new wavelet bases has been the
solution of second-kind integral equations. The bases are very effective for the
fast solution of a wide class of such problems. In addition, many other classes of
problems can be solved efficiently using these techniques. We list a few of these
problem types.
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1. Elliptic partial differential equations rewritten as integral equations by
the Lippman-Schwinger method, in which the Green's functions are non-
oscillatory.

2. Evolution of homogeneous parabolic PDEs with constant or periodic bound-
ary conditions, by explicit time steps. This method consists of repeated
squarings of the operator for a single time step, leading to an order O(n log t)
algorithm for evolving an n-point discretization for t time steps.

3. Evolution of general parabolic PDEs by implicit time steps, in which the
elliptic problem on each time step is solved in wavelet coordinates.

4. Evolution of hyperbolic PDEs by a method of operator squaring analogous
to the scheme proposed for homogeneous parabolic PDEs above.

5. Problems of potential theory and pseudo-differential operators.

6. Signal compression, including signals of seismic, visual, and vocal origin.
There is also reason to expect that analysis of such compressed data will
be simpler than analysis of data resulting from less efficient compression
schemes.

In this paper we strayed from the original mathematical definition of wavelets
to construct classes of bases tailored for numerical computation. The basis vec-
tors' principal properties of local support and vanishing moments lead to sparse
representations of functions and operators that are smooth except at a small
number of singularities. There is little doubt that other bases can be constructed
along similar lines to possess various properties. One current challenge is the
construction of bases suitable for the efficient representation of a variety of oscil-
latory operators.
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